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COMPUTATION OF THREE-DIMENSIONAL FIELD OF MOTION IN CANALS
AND BASINS USING HYDRODYNAMIC NUMERICAL METHODS

JUrgen Sindermann

I. Statement of Problem and Summary /1*

In the last two decades, hydrodynamic numerical methods have
been increasingly employed instidies of motion processes not
only in natural marine areas, rivers, and river mouths, but also
in model basins and canals. One of the primary goals was to
study first the horizontal component of the flows, which domi-
nates due to the natural geometry. Accordingly, the mathematical
models employed were generally based on the vertically integrated
hydrodynamic differential equations. Machine capacity considera-
tions also played a role in this decision. With the aid of such
models, a large amount of fundamental new information in dynamic
oceanography has been acquired since the endsof the '40s. The
HN method developed by Hansen has 6ontributed greatly to this
effort.

Once it became evident that the two-dimensional methods were
working well in practice, it became more and more desirable to
include the vertical dimension as well -- which is very important
for many marine processes -- in the mathematical models. Because
of the rapid development of electronic computers as well, the
present appears to be the right time to deal with more and more
hydrodynamic problems in three-dimensional terms.

The present work makes a contribution to this development by
generalizing the HN method worked out by Hansen for the three-
dimensional treatment of motion processes in water. The relevant
considerations are presented in Chapter II; once theospatial HN
model has been constructed, particular attention is given to
questions of numerical stability. In Chapter III, some selected
examples are given for the application of the method developed
here.

In many cases, the studies can be restricted to canal models
with one horizontal and one vertical dimension, since the funda-
mental problems of the "vertical expansion" of the HN method can
already be fully analyzed in these models as well. Extension to /2
genuinely spatial conditions with two horizontal dimensions is
then chiefly a technical problem, and has also been undertaken.

* Numbers in the margin indicate pagination in the foreign text.
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The results presented here assist in a numerical study of the
vertical structure of motion processes in canals and basins. Of
course, there must be a great deal more work in this field in
order to match the three-dimensional HN models better to the
natural situations, and in order to clarify the related mathemati-
cal questions.

I am indebted to Prof. W. Hansen for many useful suggestions
and discussions. I would also like to thank R. Krautwald and
S. Weiland for the careful preparation of the drawings.

II. Three-Dimensional Extension of the Hydrodynamic Numerical
Method

1. The Basic Hydrodynamic Equations

The starting point for all subsequent considerations is the
set of general hydrodynamic differential equations, which, in
cartesian form, read (see e.g. Sindermann [1]):

Equations of motion

A-v Z (1.2)

Continuity equation (for an incompressible medium)

The cartesian coordinate system is to be oriented so that the
x-axis points to the east, the y-axis to the north, and the z-axis
vertically upward. The origin is located at unperturbed sea level
(cf. Fig. 1). Additional definition:

u, v, w Components of flow velocity
Tp Pressure

X, Y, Z Componentbsof external force (relative to unit of
mass)
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p Density

AH, AV Horizontal and vertical exchange coefficients

f, f Coriolis parameter with f = 2csin, f = 2wcos4
(w = angular velocity of Earth)

t Time

A Two-dimensional Laplace operator:
A = +2/ax2 + 32/y2

These four equations describe the dynamics of the water. If /L
the field of external forces is known, the oceanographic problem
of determining the motionpprocesses in the sea can be replaced by
the equivalent mathematical problem, thatudflintegrating the system
of partial differential equations (1) with certain initial and
boundary conditions. Mathematically, the problem can be solved,
if the problem is properly formulated (in the sense of Courant-
Hilbert [2]).

In general, the system (1) cannot be solved in analytic
closed form because of its nonlinearity. In applications to motion
processes in natural marine areas, the complicated geometry,
which cannot be described analytically, presents a further ob-
stacle. What can be done? First, in many practical cases, it
is not at all necessary to take into account all terms of the
system (1), since some of them are negligible. For instance, the
following assumptions are often permissible (cf. e.g. Brette
schneider [3]):

(1) The convective terms are negligibly small.

(2) The Coriolis terms with f are negligibly small.

(3) In the third equation of motion, the terms with
8w/3t, Aw, and 32w/8z 2 can be dropped in comparison with the other
terms.

(4) Horizontal exchange can be neglected.

(5) The vertical exchange coefficient:is constant.

(6) The external forces X and Y are negligibl~ small, and
Z = -g.

(7) P = lpg/cm3

Of course, the legitimacy of these assumptions must be veri-
fied in each individual case. If they are valid, then (1)
acquires the following form:
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to be taken into account, so that the x-axis (2.1)

Ld --t " - (2.2)

: -" (23.3) /5

(2) and((3) are quasi-near;t (2.4)neverthelesstheycanbesubstan-

For motions in horizontal, one-dimensional channels (rivers,
canals),the vertical2) simplifies, since in general no crosscurrents have
to be taken into account, so that the x-axis can be placed along
theanalyticas o threquire without loss of generality. The motions are
then described by the following system of electronic cquations:

there are also drawbacks, in particular:

-4 o (3.1)
at

3 - (3.2)

Since the convective terms have been neglected, the systpems
(2) and((3) are quasi-linear; nevertheless, they can be substan-
tially influenced by nonlinearities -- as will be found later in
the vertical integration.

This circumstance, and the fact that the complicated geo-
metrical structure of natural marine areas cannot be represented
analytically require the use of numerical methods, but these are
currently quite feasible due to the existence of electronic com-
puters. These methods have the crucial advantage that in princi-
ple, any suitably formulated problem can be solved. However,
there are also drawbacks, in particular:

(1) numerical difficulties not related to the problem appear;

(2) the deep understandig provided by analytical relations
cannot be completely replaced by a large quantitycg of numerical
values;
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(3) frequently, a large amount of numerical data must be
stored, and even the storage of electronic computers cannot cope
with this information.

Therefore, in the historical development, horizontal motions /6
have been treated firsttiknthe overwhelming majority of cases.
Because of the dimensions of natural formations, horizontal motions
are generally the most important as well. In spite of the re-
striction to twodimensional areas, many valuable results have been
obtained and deep insights have been achieved into the internal
dynamic relationships in this fashion. For many problems, con-
sidering just horizontal motions is completely sufficient.

2. The Two-Dimensional HN Method

The dimension is reduced by one by integrating the equations
vertically._ Instead of the velocity u and v, we use mean veloci-
ties u and v, which at a point (x,y) apply for the entire vertical
direction; vertical velocities are not calculated. The limits of
integration are given by the actual surface of the sea, i.e.
the perturbation from the undisturbed level, and the bottom of the
sea (Fig. 1). The mean horizontal velocities are then defined
by

-LI

In the integration, the usual boundary-surface conditions
(see e.g. [1]) are employed (S = surface, B = bottom):

(a) NwoTlo her trs (4.) /7

ax dy

(b) Newton-Taylor shear stress formulation

- C W (5.1)



(5.2)
z= x,O 4 A 2)r

(5.3)
5jY)< ?y)- -

(5.4)

z=-h

In these equations,
. (x) (y)
SW and T(y) are the components

Fig. Tmes al of the shear stress vector atFiCarg.esian coordinate system. the boundary surfaces, and U andCartesian coordinate system. V are the components of the
air velocity at the surface. r
and A are dimensionless constant
frictionpparameters.

If it is further assumed that:

(c) PS = constant, and

(d) 4 -

which are often well satisfied (Hansen [4]), one obtains:

t1 -, R ' U V U (6.1)

,t," tY U i V-VV (6.2)

at( I< (6.3.)

The system (3) can be integrated analogously to obtain:

(7.1)



S- 0 (7.2)

The starting equations(((6) and (7) have been utilized in /8
numerous studies of the Hamburg Institute for Marine Science -,,$
(IfM) and have worked very well.

To integrate '/ (6) and (7), one must know the wind, the topo-
graphy of the region (depth distribution, configuration of the
coasts) and suitable initial and boundary conditions. In many
cases, the boundary conditions can be formulateddintthe form (8):

(1) The normal component of the velocity at the (8.1)
coast is zero.

(2) Water levels are prescribed at boundaries (8.2)
running through the open sea.

The initial conditions can be chosen arbitrarily. In gene4
ral, the system is presumed to be at rest at the outset:

u = v = 0; = 0.

m-1 m m+l (see Hansena8 5B Bttchn6ider
y,N -a+-, Sindermann,,[1], R6ber [6]).

+ X + x + X In solving the systems (6) and
- n-1 (7) numerically, the hydrodynamic

ni numerical (HN) method developed
+ x + X x n by Hansen [4], an explicit dif-

Sference method, has worked par-
+ x ~px + x ticularly well. The method does

:.. _J , n+1 not have to be discussed here in
detail,-- it has already been
done in a number of works
(Hanse [4], Fischer [7],

Sx, 0 Brettschne6der [3], Sindermann [1]).

In the two-dimensional Car-
Fig. 2. Two-dimensional tesian case (i.e. a marine area
HN grid, after Hansen ( very small in comparison with the
(with indexing). The a surface of the Earth), which is
smooth curve represents to be investigated here, the HN
the natural coastline, method employs a rectangular
and the heavy lines with grid, superimposed on the marine
right-angle corners is its area to be studied (Fig. 2). The
apppoximation in the model. arrangement of the points at
The symbols mean: which water level and velocity
+ C-computing point, components are calculated is that
x u-computing point, depicted in Fig. 2. This grid

v-computing point. is particularly well suited to the

7



structure of the hydrodynamic differential equations. The spatial
differential quotients in (6) can be represented very simply by
using central differences. The boundary conditions (8) can be
applied just as easily by having the schematic boundaries of the /9
mathematical models pass just through points at which u and v are
calculated when the boundaryeis a coast, and through C-points for
open boundaries. The natural depths are likewise specified at
u- and v-points. If the grid is chosen sufficiently fine, the
numerical model can be largely matched to natural conditions.

Forward differences are employed to approximate the time
derivatives. The numerical solution must be imagined as a finite
collection of computing planes of the type shown in Fig. 2 at
successive instance of time (Fig. 3). The mathematical model form-
ulated in this way to simulate the natural motions in the sea is /10
is designated the hydrodynamic numerical (HN) Model.

ft

o x

Fi. 3. ,u,v in space and time. After
AtHansen [5].

- AL At At 
+

The differential equations associated with (6) are:

-t. t)

Y- (t Z4,' 9,/ + 4/tj,,,,) ,J ( s9

9'1 d(9.1)

+ .t 7t t t)



with
t) _,a) U' . (0. )

Tn these equations, the .ollowing symbols are used:

hu'(n,m) Constant natural depth at u-point (n,m)
hv(n,m) Constant natural depth at v-point (n,m)

(because of the structure of (6), it is not neces-
sary to define the depth at a-points)

Hu(n,m) Current depth of water at u-point (n,m)
Hv(i,m) Current depth of water at v-point (nm)

Uu, Vu Components of vector of wind velocity at u-point /1

Uv, VQ Components of vector of wind velocity at v-point
At Time increment

A2 Distance increment

The equations in (10) are to be averaged arithmetically, sincethe unknowns are calculated at different points.

In difference forms, the boundary conditions (8) read:
u(n,m) = 0 or T(n,m) = 0, if (nm) s boundary (11.1)
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(n,m) = Sc(n,m), if (n,m) e boundary (11.2)

In the one-dimensional case, the method just explained must
be merely restricted in an appropriate sense (Hansen [5], Rose
[8], Ramming [9]). The differential equations then read (see
(Fig. 4):

ft+at) z) It)

wi ) h(- - , (12.1)/12

I I -11 m 1 * I -
---+ -x- +-x- +--+---- Boundary conditions (11)

can also be directly applied.

]1 As previously mentioned,Sgoing over to a numerical

method creates new problems,
which originate in numericalaspects, i.e. in the close-

ness of a differential4 approximation or in the

precision of a computer.
Typical problems are whetherFig. . One-dmensional N grid, (1) the solution is nu-

after Hansen (with indexig) r callystable or whether/12

The right-angled line is themodel's approximation of thentioned

whichnatural bottom profile. (2) the numerical solu-

tion approximation ores the analyti-
cal one, and if so, how well.

These questions have been discussed many times for HN methods,
and the reader should consult the relevant literature (Sindermann,
Schmitz [10], Schafenr, [11]).

10



These studies are based on the works of Courant, Friedrichs
and Lewy [12], and Lax and Richtmyer [13], which give necessary
and sufficient stability criteria for systems of linear differen-
tial equations. There is no complete theory fdr the present
quasi-linear differential equations (6) and (7), but experienced
has shown that the criteria which can be derived for the asso-
ciated systems of linear differential equations also work well
in the quasi-linear case. The Courant-Friedrichs-Lewy (CFL)
criterion in the case of (6) is:

(13.1)

and in the case of (7);

Ae

V 9 h (13.2)

These conditions are necessary, but not sufficient for
r_ stability. If (13) is not satisfied, sometimes even with too-

strict approximation instabilities appear. In many cases (e.g.
in the HN model of the North Sea), however, (13) has proved to be /i
adequate. In general, one prerequisite is the occurrence of /13
sufficiently large velocities and flat sea surfaces, which can
nullify the kinetic energy of the water (and rounding errors as
well) via bottom friction (cf. (5)). Experience has taught that

QJAL- if there are little motion and great depths, particularly with
steep depth gradients, the numerical method is particularly vul-
nerable with respect to stability. In this case, it is convenient
to introduce an artificial viscosity term, the so-called
a-averaging, which is sufficient for stability according to Lax-
Richtmyer [13] (cf. [1]).

Nevertheless, this method is problematic, since it changes
the system of differential equations (6) and therefore describes
a new physical situation. It seems more logical to work from the
outset with a horizontal momentum transfer AHA(u,v) in the sea
(cf. Equations (1)), which, physically, smooths out the motion
processes and is therefore suitable for cancelling out perturba-
tions.' Hansen (personal communication) has expressed doubt

? about thb necessity of horizontal momentum transfer for suppressing
energy in the ocean (supported e.g. by the virtually undamped
propagation of longywaves across the entire Pacific demonstrated
by Munk [14]), and considers energy dissipation in shelf regions

, V to be crucial. However, because of the excessively large grid
V spacing, this can only be partially analyzed in many HN models.

1 Incidentally, the difference approximation (10) has already under-
gone a smoothing, and this has a stabilizing effect.

11



The problembihas not been conclusively resolved. However, we
will not go into it further here. Later on, when the vertical
dimension is included, new numerical questions will arise. At
that point, the stability problem will be discussed in somewhat
more detail.

Despite the vertically integrated equations, the HN method
which has been sketched briefly here has worked well in a large
number of specific studies on natural marine areas and mathematical /14
models (cf. [15]). Lastly, twoffutthereexamples of the success-
ful application of the method should be mentioned:

-- a tid6 calculation for the River Tyne (example A) and

-- a study of tide-induced waves in a canal, undertaken
simultaneously with the HN method and a hydraulic model (example B).

Example A

This calculation was based on the IfM HN-model of the North
Sea. Fig. 5, which was taken from [15], and which was derived
from investigations 6 f~Brettschneider, shows the calculated
tidal curve for the mouth of the River Tyne on the English coast
(solid curve) for the period from October 13-20, 1965. As a
comparison, values calculated with the aid of the classical har-
monic method and other points derived from the English Admiralty
Tables and from figures of Rossiter are also marked. As a whole,
there is veryi;good agreement. This becomes even more important
when it is realized that this tide curve is just a small fractional
result of the associated North Sea model, since tidal water levels
and flows are calculated simultaneously at about 500 other points.

Example B

Tides in some simple one-dimensional canals (closed at one
end, depth h = 15 m) were investigated [16]. Fig. 6 shows the
calculated tidal range as a function of position for four canal
models (16, 50, and 55 km long, and of different forms). For the
two cases of the 55-kmlongecanal, the corresponding comparison
values, obtained on the basis of measurements in the hdraulic
model, are also drawn in. The discrepancies lie within the range
of measuring accuracy. Finally, for the case of the 55-km-long
straight canal, a comparison was undertaken at one point between
the calculated and measured vertically averaged tidal flow
velocities as a function of time. In this case as well, the
qualitative and quantitative agreement is very good.

12



Tidal Curve at River Tyne

- H.N. Method developed by W. HANSEN

o Harmonically computed considering 10 partial tides

+ High and low waters predicted by the Admiralty Tide Tables

o According to J.R. ROSSITER.
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Fig. 5. Calculated tidesfin mouth of the River Tyne, along with comparison
values, for the period October 13-20, 1965.
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Fig. 6. Range of tide as function of distance from entrance for
various simple canal models (h = 15 m). Comparison between HN
calculation and measurement in hydraulic model (model scal!e:
horizontal 1:1000, vertical 1:100).



/17

[cm/isec]

800--

I )

- Flood I Ebb ,

80 -3

60"

o I I I [mi .

__ Flood I Ebb

0 -- 0

20- 2,0 tM

Tide Curve 1x0

Time
0 60 300 600 900 min

0 1 5 10 15 Hours

L = 55 km calculated
A= 164 cm - measured

Fig. 7. Flood and ebb in a simple model canal (
)(h = 15 m). Comparison between HN calculation
and measurements in hydraulic model. In addi-
tion, the calculated tide curve is drawn in.

3. The Three-Dimensional HN Method /8

3.1. The Foundations of the Three-Dimensional HN Model

For the time being, we will base our treatment of the verti-
cal structure of water motions on the Equations (3). The reason
for this is economy of effort, in order to study the fundamental
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questions at the outset in the simplest possible model. It will

already be possible to recognize the most important problems, and

perhaps to solve them. In this respect, we will already speak of

a three-dimensional model, although the situation will be presumed

to be homogeneous in one horizontal direction.

Equation (2) will be used for genuinely three-dimensional

processes.

In addition to (3), the kinematic boundary conditions em-

ployed in the vertical integration also apply:

iU S, - (14 .1)

ax

x -- (14.2)

With the aid of Equation (3.2), pressure gradients are re-

placed by water-level gradients. One can then use either of the

two following systems to analyze the motion in the canal,

depending on whether the vertical component w of the velocity is

to be calculated or not:

+ " dt- = 0 (15.2)

-St

-- Ag - - o (16.1)

c - Uo (16.2)

3u -9- (16.3)

These equations are supplemented by the boundary conditions: /19

(1) Avau/azIS = T(x ) at the surface (see (5.3)) (17.1)

(2) For the horizontal component of velocity at the

bottom, the following alternatives are
considered:

16



(x)
(24) AV au/azI4 = TB (see (5.1)) (17.2)

(2b) uB = 0 . (17.3)

(3) The normal component of the velocity at a fixed
boundary is equal to zero (this applies to (17.4)
coasts and the bottom).

(4) = Co(t) at an open boundary. (17.5)

(5) WC/ax = const. at a closed boundary. (17.6)

Conditions (17.1), (17.4), and (17.5) are standard. Condi-
tion (17.3), i.e. adhesion to the bottom, is common in hydro-
dynamics, and is supported by numerous measurements (cf. e.g.
Van Veen [17]); therefore, in the following investigations, this
assumption is the one usually employed. On the other hand, condi-
tion (17.2) offers a chance to consider a non-zero flow at the

Lc~3t%1 bottom; its applicability has also been tested. Lastly, condi-
tion (17.6) is a way to approximate 3C/ax at a boundary; it is
only required if the equations are nonlinear.

The initial state is assumed to be stationary water:

u = w = 0; = 0.

It seems logical to use the HN method designed by Hansen
for the numerical treatment of the systems (15) and (16) and to
appropriately generalize the difference method to include the
vertical dimension. Central differences again suggest themselves
for the spatial differential quotients in the z-direction. Ih
approximating Equation (15.2) by finite expressions, an integral
must now be numerically approximated.

It likewise seems logical to start from Hansen's successful /20
arrangement of the calculating points (Figs. 2 and 4) in choosing
a grid match to the system (2) and (15) or (16). These grids are
now considered to be the uppermost calculating plane or line --
situated at the unperturbed sea level -- of a network expanded to
include the vertial dimension. The network is composed of
(not necessarily equidistant) computing planes or lines at various
depths. In this case, u-points are always situated directly above
u-points. The newly chosen w-points are located so that the
Equations (16.2) and (16.3) can be approximated as simply as pos-
sible: namely, at the C-points in the uppermost plane, and
vertically below them in lower planes (cf. Fig. 8).

In contrast to the horizontal grid, hariabe Ppi spacing dpi
in the vertical direction must be considered from the very
beginning. For one thing, available computer storage capacity does

~'{ l



z=O --- k=1 not permit more than five or
Z=.- 0ksix comput&ng planes in

z=C regions of the horizontal ex-
-O-x-O-X-O-x-O- tent of the North Sea (25 x

z x 26 grid points withaa spacing
-o -o-x-o- - k-1 of Ak = 37 km). Furthermore,
--o- -o-- k experience (cf. [17]) has ta

taught that the stateuof motion
in the ocean is often practical-
ly homogeneous overrrather

o- -x--oi_ - x - k+1 great vertical distances, while- -o- -Ox -x-- on the other hand, substantial
S I gradients can suddenly appear

within relatively small
spatial intervals (interfaces,
boundary layers). In order to

Fig. 8. x-z grid for the HN retain flexibility in adapting
model of a canal with variable the method to the situation, /21
depth and variable vertical variable spacing has been
spacing. The polygonal boun- incorporated into the analysis
dary gives the model's approx- from the very beginning.
imation of the natural bottom Nevertheless, the first funda-
profile. The indexing can a mental studies are based on
als6 be seen in the diagram. equidistant computing planes.
The symbols employed are:
$ r- and w-point Fig. 8 shows how the
o w-point bottom on the coast is approxi-
x u-point mated within this grid. The

polygonal boundary is situated
so that the boundary conditions

(17.3) and (17.4) can be applied as simply as possible. In later
studies, the approximation of the bottom is still further improved.

In order to simplifyhthe subsequent analysis, without sub-
stantially restricting its generality, the conditions are first
assumed to be linear. System (15) is linearized by neglecting
the water level in comparison with the overall depth: C << h.
In place of Equation (15.2), consequently, the relation

0

4 = 0 (18)

is employed, because it is particularly simple to approximate in
difference form. The integral can be evaluated with the aid of
the continuity equation (16.3) and the boundary condition (17.4).
It is found that system (16) is linearized analogously to (18)
by replacing Equation (16.2) by the relation

--- = 0 with we = w(z=o) (19)
t 18

18



The following analyses are based on the system (15.1, 18) or
(16.1, 19, 16.3).

In order to check the effects of this linearization, Equa-
tions (15) and (16) are also used for some of the numerical
examples given in Chapter III. The resulting differences were
always small. Nevertheless, the corresponding difference equa-
tions will be given separately.

It should also be observed that in numerical meteorology,
the vertical dimension is taken into account in similar fashion
by introducing computing planes above one another. Nevertheless,
because of the different boundary conditions, the situation is
quite different in this case; therefore, the results from one
case cannot be directly applied to the other.

3.2. Canal of Constant Depth with Constant Verti:cal Spacing /22

In this case, there are a total of K - h/Az + 1 computing
planes; the uppermost computing plane is at the undisturbed sea
level, while the lowest is on the bottom (Fig. 9).

k=O z

- -- o-x-o -k2-o- k2 z=0 xuI I I I I I U Y
x- -- o-o-x--x U2

S -k=K+1 z-h K-

x I UK

Fig. 9. x-z grid for HN Fig. 10. Numerical intregra-
model of a canal with tion of U(4v).
constant depth using con-
stant spacing Az.

The integral expression in (18) is most simply approximated
by the trapezoidal rule (Fig. 10):

-- 1 1

1 19



One then obtains the following differential equations: /23

(Without calculating w)

4 , ) /t) A A4t ti ) (20 1
-,k) = kLs,k) + (.(dL, _z-*}-Z , )-t*(t)c M ( 0 1)k -

(20.1)
I t f It i )

tt

for m = 1,...,M; k = 1,...,K

(calculating w)

41- 2~. 4,,t a-',) -(20.2)

/for m 1,...,M.

t t) I t)

(calculating w)

6. -. It - t) A Att)

t t I for m = 1,...,M; k = 1,...,K

(17.1) and (0L,2). These planes are at a distance Az above the

20(21.2)

for- m = 1,..,(

z (LH . k) = -(.., I~t ) - .--- ( t" ,' ) 144,,. -< 1) (21.3)

for m $, .... M; k = ,.,K

Two auxiliary planes k = 0 and k = K + 1 are introduced to
assist in the finite approximation of the boundary conditions
(17.1) and (177,.2). These planes are at a distance Az above the

20



surfacenand-below the bottom respectively. Then, using (5), we
obtain

It) Itt) It)

A/ , ( c)- tIo A Ui) -IU/ g (MA for all m (22.1) /24
V4z

4t ) t) It) It)
v4t- = rl (l,) , 1,( l) for all m (22.2)

Instead of (22.2), the condition

&r(, K) = 0 for all m (22.3)

is also reasonable. The remaining boundary conditions in (17)
acquire the form:

/it)

k 0 /" (22.11)

if m designates a fixed boundary

It)

r( ',,k) o (22.4)
H)

S(22.5)

/ .if m denotes an open boundary

S -- x (22.6)

if the canal is closed from the
right and the last internal
C-point corresponds to M.

Equation (22.6) is modified appropriately for a model closed
on the left.

S-. 21



With regard to these difference equations, the following
points should be noted:

(1) In place of the difference approximation (22.1), one
could also have chosen

which, symmetrically, holds exactly for the surface, but does not
use the value d(m,l). Comparison calculations have shown that
the difference between the two forms of the approximation is small. /25

(2) Equation (22.2) differs from the expression in (5) in
that the friction force at the bottom is assumed to be proportional
not to the mean flow but to the flow velocity at the bottom. This
is a better approximation of the natural situation to the extent
that friction at the bottom can actually be directly correlated
only with the flow in the vicinity of the bottom. Strictly
speaking, the approach used in (5.1) and (5.2) for the case of
vertically integrated equations can be justified physically only
when an entire water column moves uniforml#yiana single direction.
The successful application of (5) in numerous HN models indicates
that the vertical profiles in Fig. lla can frequently be used in
the open sea. For tidal currents, this vertical structure has
been established by numerous measurements [17, 18].

X, U x, U

Lu(Z)
u= u(z)

j=0
C

aKb

Fig. 11. Schematic vertical profiles for flow velocity
in motion induced by (a) tides and (b) wind. In each
case, u denotes the value of u(z) averaged over the
vertical direction.

22



For wind-induced motions, which can be generated in a relative-
ly thin surface layer, the resulting profiles can take the form
shown in Fig. llb (cf. [19]). In these cases, (5) appears dubious, /26
since -- as shown in Fig. llb -- the mean flow can be zero (so
that there will be no friction at the bottom in the model), while
the flow near the bottom is quite different from zero, thus
losing energy via bottom friction. This deficiency of an HN
model with integrated equations does not greatly affect the results,
but the computing time is substantially increased, since the
steady state is achieved relatively late due to the low bottom
friction.

(3) If, as is frequently done, the zero-motion conditions
(22.3) is used at the bottom, an empirical friction term of the
form of (22.2) is no longer necessary. This case can be inter-
preted to mean that the energy loss at the bottom is so great
that the velocity is retarded to zero.

(4) The difference approximation (21.1) presumes a constant
vertical exchange coefficient: AV = const. This makes conditions
homogeneous with respect to internal friction between adjacent
water layers. This model still does not contain a boundary layer
near the bottom with its important effects on the vertical velocity
profile. Consequently, the calculated vertical profiles of
velocity do not have the steep gradients near the bottom which may
be considered typical of natural situations. MHowever, this de-
ficiency is of a rather technical nature, and is less vital as
far as the immediate question, i.e. whether the HN method can be
generalized at all in the proposed manner, is concerned. The model
is extended in this direction in Section 11.5.

(~) With regard to the computing procedure: first, the
velocity component w is calculated -- from left to right and from
the bottom up -- next the water level C -- from left to right "e&d
and then the velocity component u -- from left to right and from
the top down.

If one wishes to forego the linearization performed in (18)
and (19), the HN model will be based on Equations (15.2) and /27
(16.2). For convenience, these are rewritten in the following
forms:

-I, -4

This replacement is based on the mean value theorem of in-
tegration, and 6ertainly will involve only minor errors as long;
as HI1 << Az. Analogously:

23



One then obtains for (15.2):

0

+ - Z40Pt 4- ( ) = 0- 9x (23)

and for (16.2):

(24)

Then, for J << Az, the following difference equations are
obtained:

[te It- (t) g /t

Ik. 4P~ -

KI-I

It ~ ' 'It- "  ) t) t - -) ( -

Att

- (26)
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If the condition ICI << Az is violated, these difference equa- /28
tions must naturally be modified, However, for the cases treated
here, Equations (25) and (26) are sufficient.

In the following, the special case 'Vwithout calculating W"
Isoomitted. w will always be calculated. Naturally, there are no
difficulties in applying the method to the first case.

3.3. Canal of Constant Depth with Variable Vertical Spacing

Initially, the variable vertical spacing is introduced for the
case of a canal model with constant depth. The analysis which
led to the derivation of the differenbe equations (20) and (21)
can otherwiSe be appropriately applied.

Let the number of
computing planes again

Im-1 m jm+i1 be K, so that there
AOZ - -- - k=O are K - 1 (in general

- x - -x--x--- -x -- k  different) grid inter-

z o--o---x--x--x k=2 vals kz (between the
I planes k and k + 1).

Again, there are' sup "0
-x-o-- Q- x-o-x-o-x plementary planes for
-x -o--c- -- - -x-- x k = 0 at a distance

6-X-o -- o-.--_-o-X Aoz = Ajz above the
undisturbedssurface,

o--o-x----x-o-x and for k = K + lat
o- -o-x- --- x-P- a distance AKZ

'' -2- - -x--- -A k=K-1 = Ak - i z below the
z --k-o-k- - - -A k=K bottom (Fig. 12).

z k=K*; The difference equa-
x tions analogous to

(21) are now:

Fig. 12. x-z grid for the HN model
of a canal with constant depth using
variable spacing AkZ.

tkdt) k*)

it) 4 L6)

- 1) (27.2) /29
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) r ) (1. '4 (C f3)

Among the boundary conditions (22), only the relations (22.1)
and (22.2) must be reformulated:

It) /

AV r/JK-1 14ur k (28.2)

3.4. Canal of Variable Depth with Variable Vertical Spacing

Since the HN models are designed with a view toward practical
applications, and since the crucial role of bottom topography is
known precisely in shelf waters, a variable depth distribution
must sooner or later be incorporated into the models. This can
be done in three ways (cf. Fig. 13):

(1) Fixed spacing and
- -i---(-kx-x- O-x- -x I quantized depth increments of

kAz (k = 1, 2, ... ).

(2) Variable spacing AkZ
and quantized depth increments

(kl, k2 being two

.. grid planes.

Fig. 13. Appraximations ofFig. 13. Apprximations of (3) Variable grid spacingdifferent accuracy to.natu-
ral depth profile in the HN Akz and variable depth

model, depending on whether increments.
theddopth increments are Method (1) would be the
(1) constant (solid line),(2) constvariablent (butsolid line), three-dimensional generalization /30-u(2) variabl e (but with of the two-dimensional HN method;
line), or (3) variable in it too, the coast is generally
(with arbitr (3) variably steps approximated within a fixed grid.dotted line). Because of the relatively lownumber of numerically practical

vertical computing planes (com-
pputer capacity), method (1) is unsuitable for approximating real
depth distributions. Method (2) is better only in special cases.
Only with method (3) can natural situations be relatively closely
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approximated. Therefore, the difference equations were defived
for that method; it contains methods (1) and (2) as special
cases.

First, a system of vertical
grid separations is chosen.

jm-1 m I m, I However, this holds for a
--- o - ---- O -- x- k- specific grid point on the hori-

Sk1 zontal line P(m) only untilT r the bottom is reached. The
k Az1 lowest plane is always the bottom

xo-- itself, even when there are
-o -- -- k still more planes in the system,

Ako -- o-- (Akz) (cf. Fig. 14). Changes
X-o-X k 1 in the system (27), which applies

kel X--O-X to models with constant depth,
I I occur in the motion equation

(27.1) and in particular in
Fig. 14. x-z grid with - the continuity equation (27.3).

variable spacing Akz and ar- In the equation of motion,
bitrary depth increments. this is done whenever, for water

less than Z Akz deep, fewer than
K equations are.to be considered,

and the boundary conditions at the bottom must be applied to a
plane k < K. In the continuity equation, it must be kept in
mind that the vETume elements of the grid now have different
boundaries. If the height of the laterally open boundary of the
lattice element (m,k-l/k) in Fig. 14 is denoted by Atz on the
left and Arz on the right, the continuity equation now reads:

lt )( It) )

(29)
(t;) (t)

3.5. Basin of Constant Depth with Constant Vertical Spacing /31

The starting point is now the system (2) of equations. If,
by analogy with the canal analysis, one wishes to calculate the
water level instead of the pressure p, it is convenient to em-
ploy the following linearized system:

-- - -- +  =o (30.1)
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f %4 4V 0---- + - o (30.2)

S1.-ro o (30.3)

- -. + - (30.4)

They are supplemented by the appropriately generalized
boundary conditions (17).

, 11 m-1 I m Im*l

)) __--O x

X-- O--X----x-- -- x x

X-- o-- x --- o------- Y -- x
X---- o x o x-- x x k K-

k- K
x- - --. -- ---- -- -- x x -

Fig. '15. Three-dimeisional coordinate grid system for
the HN model of a basin with constant depth and
constant grid spacing. The following symbols are
employed: $ - and w-point

o w-point
x u-point
* v-point

The structure of the grid matched to the system (30) is now /32
derived by combining the horizontal and vertical networks shown
in Fig. 2 and 8 (cf. Fig. 15). The difference equations asso-
ciated with the system (30):now' read:
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4vtt ) it) 4/t
- 0t f- &t - kt t-U1k)e eru k ) (31.1)

A t ) / (31,2)

twith I 1.(. ...... .. it. , )

The boundary) conditions areapproximated by analogy with (22):

iE) (t) -- -) - t ---)

14 I j<1,i () - 1, + ) k)

1I t2) t 0V- 
t 

IAyquzk) 
, L jV'(I,- 1 ) U (-( v ,)

+ I-( -r j- , k1 14 tr I, , C. < Lr(M, 0., )

e) t) (32.1)

21with

M t k, 4 (k, W, (+ 1, ( f
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/( ) ) (32.2) /33

or

14 (32.3 )
u(n,m,K) = v(n,m,K) = 0

= (nt) if (n,m,k) (3.24)
u(n,m,k) = 0, v(n,m,k) = is situated on a fixed

boundary

it)

w(n,m,K) = o (3224)

'(n,m) = C (32.5)
if (n,m) is situated on an open
boundary.

The three-dimensional equations can be generalized further,
but this will not be done here.

4. Explicit and Implicit Difference Methods. NUmerical Stability

4.1. Numerical Stability of Explicit Method with Constant
Vertical Spacing

The difference equations including the vertical dimension
have been formulated so far without taking the numerical stability
of this approximation method into account. Initially, only the
criterion (13) -- the CFL condition -- which regulates the
relationship between thetime increment and the horizontal dis-
tance increment, is known.

However, one would not anticipate that once the quantities
At and Ax have been established, the vertical distance increment
can be chosen arbitrarily. Instead, there will likely be a
condition analogous to criterion (13). This will now be derived
by means of an eigenvalue analysis, followed by a general /34
discussion of stability on the basis of results found in the
literature.

The starting point is the difference equation (20.1) with the
boundary conditions (22.1) and (22.2); it will be found that the
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special choice of boundary condition is not particularly significant
for numerical stability, within certain limits. With the
sambols

I ( (t )

= ( a ) l + au + b

14 k
CL A, ..

uk = au 1 + (12a)uk + au + bk

a-

uK-i = auK-2 + (1-2a)uK_1 + auK + bK_1

u auK-i + (-a-b)u + bK

or, in matrix form,

t)(33)

4 31IB31



In this case, u' is (u, ..., u ,xpressed as a column /35

vector, u is the column vector (ul,..., uK), and b = (bl,...,bK)
is the column vector of inhomogeneities, i.e. the terms which do
not contain the velocity u. Lastly ,1j is the amplifiddtion
matrix as defined by Richtmyer [20], Which characterizes the

special difference method.

For the concrete cases discussed here a and b havetthe
following orders of magnitude (AV = 103 cm /sec,AAt = 102 sec,
Az = 103 cm, r = 10- 3 , jlu{ = 10 cm/sec):

4A t 40 4~o

4o

i.e. bL_< a. Therefore, in the following stability analysis,
friction is ignored. Then the amplification matrix is

1-a a
a 1-2a a 0

a 1-2a a

0 *
a 1-2a a

a 1-a

Here, K gives the number of rows and columns in the square
matrix i . If (33) is viewed as an initial-value problem, the

necessary criterion for stability of the interation process ex-
pressed by (33) is the von Neumann condi iyn, according to which
the absolute values of the eigenvalues K1 k of GO must be bounded

(cf. [20]):

SAi 1 1 + Do(t) (i = 1..,K) (34)

32



for 0 < At < T and all grid points within the region; the function
0(At) denotes that the leftover term is at most a linear function
of the time step.

In the case where the elements of O are bounded, (34) /_6
can be sharpened to actually provide a sufficient condition for
stability (cf. [20]):

.10)

(0 (35)

This criterion is only applicable when a is bounded, i.e.
in case the time step does not become arbitrarily large and the
vertical distance step not arbitrarily small. Just this restric-
tion shows that the spacing cannot be chosen arbitrarily in the

explicit method.

In principle, the eigenvalues of the amplification matrix can
be calculated in different ways. For instance, the simple makeup
of the matrix permits an analytic solution of the system (33)
in the form of a Fourier series, in which the eigenvalues are
found directly.

However, this route will not be taken here, since it does
not appear to be generalizable for the case of a more complicated
structure of this matrix. To calculate the eigenvalues of the
amplification matrix, we start from its characteristic equation:

-a-A CL

OL -LA -A 0

=
k -(36)

c4  i-- k

Claim: The values Dk are related by the recursion formula

(37)
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Proof:

By adding the first column to the second in (36), we obtain

,.- 4-L- -

0

Then, expanding along the first row yields:

iLA-A4 0

V A( -A-, ) - -(-A) A)

.k-I

The determinants on the right side differ only in the first column,
and consequently can be added easily:

2 a

Byyadding the first row to the second, and then expanding along the
first column, we obtain (37).

Now, by repeated application of the recursion formula (37),
the number of rows of the determinants on the right side can be
reduced one by one:
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'- ) J k-Z.

J'k-J -L"'2

and so forth.

Claim: The (Dk) satisfy the recursion formula_

/38

kE - -,)(/) (- 2-A
V=o

for q < k.

As usual, [x] denotes the largest integer less than or equal to x.

Proof: (by complete induction on qi).

(1) Let q = 1. Then

in agreement with (37).

(2) For the induction, we now assume that (38) is correct.
Then we must show:

V 0

By (37):

- ~ z- -a,
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Substituting this above, we obtain:

[(q + )/2], since the binomiacoefficient vanishes for v , q/2.

iii (4-1) )( 2- 4' CL

Then, the two upper sums can be combined:

V-O

11+ )_ (39)

L1 o

The difference between the binomial coefficients in the first sum
can be calculated as follows:

v ;.:(q, -L ! v! (q - L,)!

( - v) v (9- v)' -v)

This binomial coefficient vanishes for v = 0; consequently the
lower limits of the sum in the first term of (39) can be raised
by one:
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yJ Lo--v v I

If, in the first sum, the index is modified by replacing v by
v - 1, the result is formula (38), which was presumed to be
correct.

/40

Using this formula, the characteristic equation of the amplifica

can then be calculated .

Formula (38) finally yields

Using this formula, the characteristic equation of the amplifical
tion matrix Dk = 0 can be formulated for an arbitrary number k of
computing planes in the vertical direction, so that the eigenvalues
can then be calculated

Equation (40) implies that one of the eigenvalues is always
Al = 1, which satisfies the first part of Condition (35).

The first six equations and their solutions are:
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k1: 3 (- (-L --A) [

ALk = :

k =-- 34

Ry = 1 - .1t )

cs Is o

S1/41

/ k 6: (-1~~/j(1& - ( 1 = 0 z

tkk
o - ii

2 - (

29 = I- +

It can be seen that, at least for k < 6, the eigenvalues of
can be represented as follows:

1k)k)

L' ;' I - ; q t with i> 0(i:o
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This calculation of the eigenvalues for models with up to six
computing planes will suffice in this case, since more extensive
analyses are not planned for the time being, because of the
limits set by computer capacity. Moreover, it is not at all ob-
vious that the eigenvalues up through k = 6 can be given ex-
plicitly. For k = 7, this is no longer possible even in this
case; one would then have to resort to approximations.

From the sufficient condition (35) for the stability of the
method, restrictions can now be derived on the magnitude of a,
and thus on the relationship between the time step and the verti-
cal distance step. Presumably, At will already have been
determined in accordance with (13), following the choice of a
suitable horizontal distance increment Ax. Then, (41) and (35) /42
yield

Since a(k) > 0, that results in the requirement1

6; CL C <2

and with a = AvAt/A2z, the desired sufficient stability criterion
is obtained

("4)A (42)

Hence, the larger the time step and the greater the vertical mo-
mentum transfer, the greater the vertical distance increment
should be. In contrast to the CFL criterion (13), according to
which the time step and the horizontal distance increment are
linearly related, the relationship in this case is quadratic:
halving the vertical distance step means dividing the time step
by four, in case Az and At are dhosen so that (42) is just
satisfied.

Examples:

(A) We will consider motion in a canal with water h = 50 m
deep. Let the horizontal distance step be Ax = 8000 m. To what
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restrictions are the time step and thl vertical distance step sub-
ject in a six-plane model (Av = 0.1 m /sec)?

According to (13);

-e sec 3 161 ree

For instance, if At = 300 sec, (13) will certainly be satis-
fied. The maximum a for k = 6 is then found for i = 5, with

Hence

and > . '.4 '

Hence, the minimum grid spacing sufficient for numerical sta- /43
bility is in this case greater than 7.48 m. Therefore,
Az = 50/(6 - 1) = 10 m resulting from equidistant separation is
acceptable. We will return to this example in Chapter III.

(B) We again consider the canal in Example (A). Suppose
that the time step At has not been establishinguusing (13), but
will be determined by (42) after the choice of Az. What restric-
tions would then apply to At for a 2-, 3-, ... , 6-plane model?

The answers are contained in Table 1.

To apply criterion (42), it is enough to know the maximum
cju (k) (k)

value max of the set {a k)}; except for the case X = 1, this

value corresponds to the eigenvalae of greatest magnitude

1 (k) of the amplification matrix. It is not necessary to know
max (k)

the other eigenvalues 1*

This raises the question of whether statements can be made

about IXA(k) even without breaking down the polynomial (40) intomax
linear factors -- a process which will obviously give rise to
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TABLE 1. VERTICAL SPACING AND MAXIMUM PERMISSIBLE TIME STEP
IN AN EQUIDISTANT k-PLANE MODEL

k Az [m] At < [see]

2 50 25000

3 25 4167

4 16.7 1636

5 12.5 863

6 10 536

considerable difficulties in the general case for k > 6.

If the eigenvalues of greatest magnitude are plotted on a
graph for the six known cases k = 1,.:111k = 6, the resulting

:( k)
pattern suggests max converges to a limit 1o > 0 as

k ) (cf. Fig. 16). As indicated by the diagram, this limit
appears to be

This suggests the criterion /44

2- .. .... (43)

for the general case of a k-plane model. This conjecture has been
confirmed by analyses of Richtmyer (see [20], p. 17).

The existence of a universal stability criterion for models
with arbitrarily many vertical computing planes iSiof great im-
portance, since it eliminates the necessity of working with the
characteristic equation (40) for each model, which can be diffi-
cult in particular cases. Nevertheless, the condition((!43) --
as Fig. 16 shows -- is necessary only for the limiting case k + m,
and can be replaced by less restrictive conditions for models
with relatively few computing planes. Therefore, in these cases,
(e.g. for k < 6), the above "individual" stability criteria are
preferab1e.
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IPimax 4.2. Numerical Sta- /45
1 bility of Ex-

plicit Method
I -a with Variable

Vertical Spacing

I -2a So far, the
analyses of numerical

1-3a stability have.pre94
sumed constant verti-
cal spacing. Adherence

1-4 to criterion (42) will
be assured even in the
case of variable
spacing whenever the

n smallest value AminZ
satisfies this con-

1 2 3 4 5 6 dition.

Fig. 16. The maximum eigenvalue of the We hypothesize
amplification matrix as a function of that this condition
the number of vertical computing planes. is also necessary.
The broken line is the approximation We will not give
curve. the proof for the case

of a general k-plane
model; instead, the

s8tiati~n will be illustrated by an example for k = 3. In this
case, the difference equations for u are:

AvAt
U1 =U 1 - 2(u 1-u 2)

22

with i

The eigenvalues of the associated amplification matrix aref

1A 1

20 1 2 z 2 z 4 z

with
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From the requirement |Il. < 1, we obtain the condition

A 2zt >zAVIt 24 (44.1)

For Alz = A2 z = Az = h/2., (44.1) leads to criterion (42) for the
case k 3:

n2 z > Av~tI (44.2)

Assuming that in the equidistant case, the time step had been, /46
chosen so that this criterion, and thus (44.1), were satisfied:

2 C (44.3)z >APt =

Then any deviation from the equidistant configuration would act
to the detriment of the inequality in (44.1). Namely, let

Az- Az-E

According to (44.1), the following inequality must be satisfied:

2 z -6= (Az-E)(Az+) = zz t> AVt At

However, (44.3) only says that

2z '> C

Hence, for e # 0, (44.1) is not in general satisfied, if the time
step At of the equidistant case (the spacing for which is obtained
via the arithmetic mean: Az = (Alz + A2 z)/2) is to be retained.
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If, on the other hand .i At in (44,2) is chosen so that

S zin =-12z z  >

then (44.1) is always satisfied:

112 2z = A z(Az + 2E)= Z2 + 2c-6 > C

since, according to (44.3), it is already true that A2z > C.

4.3. An Implicit Difference Method /47

The stability criterion (42) constitutes a major restriction
in HN models for calculating the three-dimensional structure of
motion processes. This may be illustrated by Example A on p.339.
With a desired spacing of Ax = 8 km, it was found that the very
reasonable time step of At = 5 min was allowed by the CFL condi-
tion. Then, by applying criterion (42), it was found that the
vertical spacing had to satisfy

Az > 7.48 m.

If the water motion is subject to large variations in the vertical
direction (e.g. near the bottom), such a large spacing must be
viewed as far too big. Simulating,, e.g. boundary layers in the
HN model makes it desirable that the distance steps Az here be
in the decimeter or even in the centimeter range. However, even
with water several meters deep, the necessary restriction to a
small number of computing planes means that such spacing can no
longer be achieved in the explicit HN method discussed so far, for
reasons of numerical stability. This makes it necessary to design
a numerical method which gets liberated from criterion (42) and
which guarantees numerical stability for an arbitrary choice of
the vertical distance step Az.

This is now accomplished by going over tota partially implicit
method, one proposed by W. Hansen, and used for the first time
with great success for the vertical dimension in the present
investigations.

The new method retains the explicit HN method for the horizon-
tal dimension, since the necessary stability condition (13) has
not proved to be a major restriction for the models considered here.
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To calculate the vertical velocity profiles, on the other hand, an
implicit procedure is induced by a new approximation of the
vertical exchange term in the difference equations. TTo calculate
the velocities in k vertical computing planes, this implicit
method requires the solution of a k-dimensional system of equa,
tions for each grid point in the horizontal plane. /48

The new method will now be illustrated for the previous case
in 3.2 (canal of constant depth with constant vertical spacing)
and studied in more detail. Using Equations (16.1,19, 16.3) as
starting points, theonly equation which will differ from those
given in systems (20) and (21) is the equation of motion, inasmuch
as the exchange term is approximated in a new way:

Av2 It) t)

(explicit) /AV-2 t 2z(u(m,k-1)-2u(m,k)+u(m,k+1))

(implicit) 2 2~ C(t) () [ t)

i i AVA 2 z (u(m,k-1)-2u(m,k)+u(m,k+1)

+ u(m,k-1)-2u(m,k)+u(m,k+1))

A time average of the values from two successive computing
planes is used for the exchange term. in Richtmyer [20] or
Forsythe-Wasow [21], one finds that such a procedure compels the
method to be stable in many cases. Later on, this will be shown
for a special case in our situation as well.

The implicit form analogous to the explicit difference equa-
tion (20.1) is now:

u(m,k) - -- (u(m,k-1) - 2u(m,k) + u(m,k+l))
2n z
A ] t)(451)

= u(m,k) + 2 (u(m,k-1) - 2u(m,k) + u(m,k+1)) (45.1)

gt( ~( 1m+l) -(m)) form = ,..o,M; k = 1,.o

How can (45.1) be solved in practice? We introduce the fol-
lowing abbreviations:
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(t1-6cj

Uk u(m,k)
(t)

Uk = u(m,k)

a 2

Furthermore, we assume, without loss of generality, that the /49
shear stresses at the surface and at the bottom can be neglected.
Then, the following system of equations is obtained

-~u 1 + (+a)u 2  - u = b2

ua- + (+a)+{ u = BK-1

of the system ((455.):

= (1- )ul + -u 2  =

b2 = Ul + (1-a)u2 + u -Z

a-a

bK-1 uK-2 + (1-a)uK 1 + uK K

b a a

b uK1 + (1- )uK  -

The system (45.2))can be solved simply by the Gaussian al-gorithm. One begins with the last equation and derivds a
relation between two successive unknowns at each styp. Arrivingat the top, one finally obtains two equations for ul and u4. From
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tpem, ul and u2 can be determined, then u3 and finally all other
uk. We will now give the appropriate recursion formulas.2

In general

u - ck uk-1 + dk fr k = 2,.,K . (46.1)

In this equation: /50
a a -1

c K-1 = (1+a-(- 2 )2(1+)-1 1

a -1

and dK = (1+) bK

d = +a-(a)2(1 )-1 -1(bK1 + (1+ )-bK

Summarizing, we obtain for the coefficients:

a a a1
ek  i+a 2ck+ 1 for k = 2,...,K (46.2)

eK+ 1 = 1

dk = Ck(abk+dk+ )  for k = 2,...,K (46.3)

d =0dK+1 = 0

2 It is always assumed that the determinant of the system (45.2) R
is not equal,, to zero.
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For k =;:2, (46.1) and the first equation in (45.2) yield
the system of equations

1 1

- c 2 U1 + u2 = d2

( + a) u- u 2 = b

and hence

a d2 + b

a a
2 22

Now, successive u2 ,...,uK can be calculated by (46.1) from /510
top to bottom.

For the case 3.3 (canal of constant depth with variable
vertical spacing), the corresp.onding result is

Uk = ekukl+dk (ak -Avl+ )
k k-1 k k -k-lZ+ k z

ak l+ak 1 1 Ck+ -1

k Ak-1 z  k k-1+ Akz-kzkZ ; K+1

(47)
d =ck- b + 8 k d k 0
k ak ak- +1 8 K+1

7 for k = 2,...,K.

4.4. Numerical Stability of the Implicit Method

No exhaustive stability analysis has yet been performed for
the combined explicit/implicit method employed here (explicit
horizontally, implicit vertically). On the other hand, numerous
works have dealt separately with the stability of the explicit
HN method (cf. [5, 3, 11]), and the stability of this implicit
method (cf. C[20, 21]).

For now, the main objects of interest are the properties of
theimplicit method characterized by (45). This method can be
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assigned to the general class of implicit difference methods
characterized by the system of equations

(tU) t) U2 (c5 t) 2

uk - uk  8(3 U)k + (1 -8)(J u)k

with a = const > 0, 0 < 6 < 1,

and ct) ) (tJ

(2U)k = Uk - 2uk + Uk+

(cf. Richtmyer [20], p. 16). For 6 = 0, this yields the original /52
explicit system while 8 > 0 gives an implicit method. The degree
of stability of the system (45) depends on the choice of 8.
According to Richtmyer, the criterion is

26t ~ 1

2 1-2 if 0 < 6 < 1/2
(48)

No restriction, if 1/2 < 6 < 1.

The case which will be used here, namely 6 = 1/2, which was
studied for the first time by Crank and Nicolson [22],according to
Forsythe and Wasow, and which has a particulatly small approxima-
tion error, therefore results in a stable solution for any choice
of Az. For e = 0, observe that (48) yields the criterion (43).

Criterion (48) is valid only when the system has constant
coefficients -- as in (45). Moreover, the boundary conditions must
have a relatively simplee form: they must be linear and homo-
geneous. Since, if the shear stress at the bottom is negligible
(it was shown on p. 32 that this assumption is justified for the
models discussed here), this requirement is satisfied for each
of the boundary conditions (22.2) and (22.3), the special choice
of the boundary conditions does not matter here as far as numeri-
cal stability is concerned.

In applying the combined explicit/implicit method, consequent-
ly, only the CSL condition (13) for the horizontal distance
increment need be satisfied; there are no iestrictions at all on
the vertical distance increment. Numerical practice has shown that
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the high stability of the implicit method used in the vertical
direction obviously overflows into the horizontal direction as
well: even if the CFL criterion is violated by a small amount,
the solution remains stable.

We will now prove, for the example' gof a simple, three-phIne
model,tthat the implicit procedure just described is uncondition-
ally stable. In accordance with (45.2), the fundamental
homogeneous system of equations is:

+)ul- u + /53
a a a a /+ (+a)u 2  + 1-au 2 + 9)

- +2 + (1+ (=au2 + u3

+ 1 + 23 1-a

S a a a

2 '2 2 2

[sic]

If the matrix on the left is denoted by 0( [sic], and the matrix
on the right by y( , the matrix equation can be rewritten

and the vector u' must be determined from this equation. This
is simple to do formally:

-is - = ,, .

The matrix - = O( CT is the amplification matrix of the im-
plicit system of equations (49). It is found to be
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2
1+a 2

4 a a

(Th cr es root of l ae 2 (1+ +)

1a
a 2 a

1+ 1+a 1+a2 2 2

a a 4I

2(1+2)(1+3 +,2a (1+ (1+3
2 2 2)2

The characteristic roots of are:

A, =1 i/54

a

2a
32

1 + 2a

Since a > 0, it follows that the eigenvalues 1X always
satisfy the condition

AI 1 , A;J < 1 (i 2,3)

for an arbitrary positive a. Howevery this means that the method
is stable no matter how the vertical spacing is chosen.

Incidentally, one could have obtained a weaker result. by
not calculating the eigenvalues directly, but instead estimating
them by the well-known Theorem of Frobenius (see e.g. [23]).
According to this theorem, for a matrix (bik):

Smax K b51i k 1
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In the present case, all three rows satisfy

i + 2a + 2a2

\l - .bik = 3-2
i 1 + 2a + 2

However, this shows only that the necessary criterion (34) is

satisfied.

5. Simulation of a Boundary Layer Near the Bottom in the HN Model

While suitable boundary conditions for lateral boundaries on

the surface can easily be formulated to conform to natural

situations, things are much more complicated at the bottom.

However, the situation near the bottom plays a crucial role in /55

determining the shape of the vertical velocity profiles. Fig. lla

depitts a typical profile, such as those found by Van Veen [17]

by means of numerous tidal measurements off the Dutch coast.

That curve can be represented analytically by the well-known

empirical power law

u(z) = +h

where Van Veen found a = 5 to be the most favorable Value. Charac-

teristic features of this profile are that

-- from the surface to the bottom, the water flows essential-

ly in the same direction,

-- the velocity is greatest at the surface,

-- the velocity right at the bottom is zero,

-- the velocity is practically constant over a long vertical

distance (i.e. varkes only slightly from a mean value u) and

undergoes a steep drop only in the immediate vicinity of the bottom.

It was already mentioned previously that the boundary condi-

tions (22.2) or (22.3) would not suffice by themselves to

reproduce the measured profiles given in Fig. lla in the HN
model.
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What is crucial is that this profile is obviously influenced
strongly not only by the boundary oonditionuat the bottom, but
also by the variations in vertical momentum transfer with depth.
If the vertical exchange coefficient AV is assumed to be constant,,
-- as has been done so far -- the vertical exchange term can be
written in the form employed in Equation (16.1):

d2-
2 (51.1)

This expression has a substantial influence on the vertical pro-
file. If it is supposed that the system has reached a steady
state, and that the horizontal gradients of water level are
slight, this profile is described by the equation

/56
d 2u

2 
0

dz

which corresponds to a linear rise of velocity from the bottom
to the surface in the form

u(z) = c1Z + c2

where cl and c2 areeconstants. This means that the natural verti-
cal profile of velocity given in Fig. lla is not adequately
approximated in general when (51.1) is employed. The more this
term dominates the other term in the equation of motion (16.1),
the greater the tendency toward a linear prbfile willbbe. This
result does not make any difference as far as the numerical
behavior of the solution is concerned, but it is very important
for practical considerations, since it makes the HN models de-
signed so far appear somewhat unfit for applications.

How can these J)HN models be improved? That is, how can they
be better adapted to natural situations? In view of the above
analysis, it seems logical to abandon the assumption of a constant
vertical exchange coefficient and to represent the exchange term
by the expression

(51.2)
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which can be derived directly from Newton's fri6ti.on equation
(cf. Sverdrup [24].

Now the difficult part is to find a suitable law to describe
the vertical turbulent exchange AV as a function of depth. Numeri-
cal data on AV in the literature vary widely and depend heavily
on the type of flow under investigation. Usually, just one
value is given, intended to cover an entire range of depth (cor-
responding to AV = const). This order of magnitude is 103 cm2 /sec
(SVerdrup [241], p. 482). Sverdrup merely makes a roughtquali-
tative statement about the vertical distribution of AV, stating
that near the bbttom small values were measured throughout, while /57
large values occurred at a great distance from the bottom. Kagan
[25], who looked for a suitable expression for AV to use in ana-
lytical studies of three-dimensional motion, arrives at the law

Ai if 0 - zr  h + d

z+h (52)AV if - h + dZ z -h

after a thorough study of the literature, in particular of the works
of Boden [26], and after is own investigations. IT (52), d is

the thickness of a boundary layer
near the bottom. This approach
therefore keeps AV constant from

z A the surface down to a point near
AV AV the bottom, followed by a con-

tinuous transition to a linear
drop to zero in a boundary layer
near the bottom (Fig. 17). Two
methods now suggest themselves
for matching the HN model to the

h natural situation:

(1) The~approach given in
d (52) is employed. Since the

boundary layer near the bottom
is very thin relative to the
total depth, this can only be

Fig. 17. AV(z) for a two- done by suitably refining the
layer model with a linear grid network near the bottom.
drop near the bottom.

(2) A two-layer model is
used, with a constant exchange

coefficient AV* above_the boundary layer, and a smaller constant
exchange coefficient AV in the boundary layer.
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A A A We will take alternative

V V 1 (2), Numerically, this case
i can be implemented by pro-

viding a boundary layer of
thickness d as the 16west grid

k_ k2 element in the vertical direc-
h k=K-2 tion (Fig. 18). Now assuming

that right at the bottom, the
exchangetterm (51.2) dominates /58

S | kK- the other terms in the equation
dof motion (16.1) to such an

k= K extent that those other terms
can be neglected (which appears
legitimate for the boundary

Fig. 18. AV(z) for a two- layer), and hence that the
layer model with homogeneous equation
conditions in each layer.

? (A 0(53)

Applies, we obtain an easily manipulated boundary-layer condition
at the bottom. Namely, in difference form,(53) means that (cf.
(27.1)):

2 (A* UK-2-UK-1 UK-- UIK
-1 z+d V K_ z  V d

If, in line with boundary condition (22.3), we suppose that there
is no motion at the bottom, uK = 0. We then obtain the relation-
ship:

K- 2 = (1 + K-
AVd or

(5)4)

uK-2 = (1 + ) uK with a = ' '1z

Ad

Introducingtthis condition (54) makes it simple to simulate
the boundary layer near the bottom in the HN model. The quan-
tity x is a dimensionless parameter which can be varied in con-
formity with the model until sufficient agreement is attained /59
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between the calculated andoiceasured vertical pr.files of velocity.
In this way, the difficulties involved:i.n a quantitative determina-
tion of x on the basis of measurements of vertical exchange in
boundary layers are avoided. The parameterization presented here
was already noticed by Kagan [251.

If, in line with boundary condition (22 2), motion is per-
mitted at the bottom, a boundary-layer condition analogous to
(54) can be derived.

III. Selected Examples

1. Tides in Canal of Constant Depth

Example 1:

The M2 tide is studied in a simpe canal model of constant
depth (92 km long, 50 m deep). The grid employed can be seen
in Fig. 19,(cf. Fig. 9). With a horizontal spacing of Ax = 8 km /60
and a constant vertical increment of Az = 10 m, there are 11
internal c-points and six computing planes in the vertical dlnec-
tion, the plane k = 1 coincided with the undisturbed surface,
and plane k = 6 with the bottom. The tide is given as a sinusoidal
wave at c-point 13 with an amplitude of A = 100 cm. The time
step is At = 5 min and the exchange coefficient is constant:
AV = 10 cm2 /sec.

1 2 3 4 5 6 7 8 9 10 11 12 13

!x k= I-- o-O-ox-o--x--o-x-Q-x- ® -x-a-x--x- -x k 1

X-o--o-X-o--o---X-O-X---o--x--o --o- X-o-x- 2

X---O------- O-X-O -- ------ - -- 0-x--X- X- 3

x--O-- o---x- o- X-C-X---X-O-x-o-X-O-X-O- O-X-O-X-o 5

x- o-x- -x-o-x-o-x-o--o'-x-o-x-o-x-- o-x-o -x-o-x-o 6SX.-ow-oX--a---:-o-o-X-o-x-o-X-o-x-o-x-o-x-o-x-o
Fig. 19. x-z grid of the model canal C(k= 92 km,
h = 50 m).
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After four periods, the calculation is practically stationary,
i.e. the water level changes by less than 1 mm from one period
to the next, and the velocities by less than 1 mm/sec.

io-n

Fig. 20. M2 tides in canal of constant depth. Water
levels at different tidal phases (every eighth of a
ppriod)), The tide waves are generated on the right,
and the canal is closed on the left.

Key: a. Point

-1

Fig. 20 depicts the water level along a longitudinal section
for eight different tide phases. The effect typical of canals
of these dimensions is found, namely that the amplitude of the
water level increases oward the end of th canal. It should also
be observed that the water level rises and falls practically
simultaneously over the entire canal, so that no nodes or anti- /61
nodes can form within the canal. This oscillation pattern is
consistent with well-known results for standing waves in canals
of constant depths, as given by e.g. von Trepka [27]. The e
equation

L = TVgh (T is thepperiod)

yields a value of almost 1000 km for the wavelength L of the M2
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type if h = 50 m. This value is many times the length of the
canal. The linearity of the starting equationsis manifested in
the virtually mirror-symmetric surface pattern relative to the
axis = 0 for tide phases T/2 apart in time.

The horizontal and vertical velocities distributions are
given in Fig. 21 for two selected tidal phases along a lengthwise
section of the canal. In order to bring out the relatively small
vertical components of the velocity, the vertical dimension was
stretched by a factor of 800.

Horizontally, the flow velocity is a maximum at the entrance,
and vertically, it is greatest at the surface, the velocity
decreasing toward the end of the canal and toward the bottom. At
theeentrance of the canal, the flow vector has only a relatively
small vertical component. Thellatter grows toward the end of the
canal and, given the distortion in the diagram, results in a
predominantly upward or downward flow at the fixed boundary. The
upper diagram (influx and upward motion) is associated with the
canal filling, and the lower pattern (outflow and downward motion)
with the canal draining (cf. Fig. 20).

The line connecting the tips of the arrows for a fixed point
in the horizontal plane yields a vertical profile, which is
analogous to that discussed later in Fig. 37 (top).

2. Tide in Canal of Variable Depth

Since marine areas of constant water depth are very rare in
nature, one of the principal objectives was to incorporate a
variable depth profile into the HN models at an early point. In /63
order to accumulate numerical and programming experience, some
simple canal models with schematic depth increments were first
investigated. The properties of the M2 tide in a canal 92 km long
with variable depth was studied under conditions otherwise
identical to those in Example 1.

The depth profiles employed are shown in Fig. 22.

Example 2: canal 50 m deep, with ridge 20 m deep in middle;

Example 3: canal divided into two sections, one 20 m deep and the
other 50 m deep;

Example 4: canal with stair-shaped configuration (five levels with /64
depths of 10, 20, 30, 40, and 50 m).

The results of these studies areasummarized in Figs. 23, 24,
and 25: as in Example 1, the diagrams show the form of the water
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SBecken im richhgen Hlstoab: 92 km x 50m 23cm X 0,01cm

ba
bPunkt 2 3 4 5 6 7 8 9 10 11 12 13 /62

o __- ,- --- - -. __-- -- - - --- --- - - - --
10

to

20

II

i'I

Punkt 2 3 4 5 6 7 8 9 10 11 12 13

0

40 . - " - -- -

50 mrn

0 20 O cm/sec

Fig. 21. M2 tide in canal of constant depth. Velocity
distributions (longitudinal section) for two different
tidal phases (t = 0, t = T/2). The vertical scale of
the canal is exaggerated by a factor of 800; the thin
line at the top bf the diagram reflects the true dimen-
sions of the section.

Key: a. Basin on the correct scale
b. Point
c,. Height of basin exaggerated by a factor of 800
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surface .(for eight tidal
phases) and the velocity dis-
tribution (for two tidal
phases) along the 16ngitudinal
section for the steady state.

SEi r s t cons'i de nnt he1wat e r
evelsl,,:fItdwas found that

the modified depth structure
had had a decisive influence
on the configuration of the
water surface. There is
greater shape variety in the
longitudinal profiles, and
extrema are observed in the

I interior of the canal. It
I is characteristic that there
I are now points in the canal
I (indicated in the drawing by

a vertical line,)distinguished
by a particular steep water-
level gradient, thus sug-
gesting an ostillatorynndde.

II This effect occurs in the
region of the ridge in
Example 2 and near the change
in depth in Example 3. INi
Example 4, there are actually

Fig. 22. Schematics of canal two such "nodes."
models with simple depth incre-
ments (upper three) in compari- The greater complexity
son to model with constant of these curves are compared
depth. The tide is generated with those in Fig. 20 is a
at the right, and the canals are symptom of the fact that the
closed on the left. water level in the canal no

longer rises and falls simul-
taneously along its entire

length. Parts separated off by obstructions and shallow areas of
the canal are not capable of immediately following the motion of
the water level at the entrance. They participate in this motion
with a certain phase lag, so that sometimes the water level in
these sections is still rising while the level has already begun
to fall at the entrance, and conversely.

The velocity fields have also been greatly altered by the
modified depth structure. The changes in depth alter the cross
section and thus intensify vertical transport and raise horizontal
velocities are particularly shallow points. Inherently, condi-
tions are most drastically modified near the disturbance, i.e.
the change in depth, while otherwise there is a tendency to
preserve the original state, namely in the entrance zone of the
canal.
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2 3 4 6 7 9 1 12 13 Punkt

-0

00
a

Punkt 2 3 4 5 6 7 8 9 10 11 12 13

tol

30 -

20 - m

10o ------ --- ----...- .... --- _ _-------.-- -

S30

40

50 m 0 20 0 cm/sec

Pig. 23. M2 tide in canal with ridge. Top: water level every
eightheofCaaperiod. Center: velocity distribution for t =O,

\ttom: velocity distribution for t = T/2.
Key: a. Point
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/66

-0 ~a
s a s ra --- -- c s in Punkt

0

-10 -1 0

a Punkt 2 3 5 6 7 8 9 10 11 12 13

0 - -----

101 1.

10 r-r-----;- ----- '~; -;;

20

30 -

50 m _

0

20

30--

50m 0 20 40 cm/sec

Fi 24. M2 tide in canal with two different depths. Top: water
level every eighth of a period. Center: velocity distribution for
t = 0. Bottom: velocity distribution for t = T/2..

Key: a. Point
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i I 3 9 i i Punkt

100 -

a
Punkt 2 3 5 6 7 8 9 10 11 12 13

101

20

30
0

50 0 20 4 cm/sec

Fig. 25. M2 tide in canal with stair-shaped depth profile. Top:
water level every eighth of a period, Center: velocity distribu-
tion for t = 0. Bottom; velocity distribution for t = T/2.

Key: a. Point
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Example 5: /68

Already with a view to practical applicationsaand thus to HN
models conforming to natural conditions, the next example dealt
with a canal with a "natural" depth profile: from the IfM's
HN model of the North Sea, the Grimsby-Esbjerg depth profile was
taken and converted to a canal model (Fig. 26). (In order to
make it easier to compare it with the models just discussed, the
canal was again taken to include only 13 points, so that the
profile terminated before the Danish coast of the North Sea was
reached.)

Sm= 1 2 3 4 5 6 7 8 9 10 11 12 13

oX-x-o-x-o-x-o -o- x-o-x-o- -o-x-o - k- 1
X o-- --o-X-o-X-o- -o---o0 -X- -- o-- o-X-o--X-o-Y-O 2

-L0 - = -o-x-o---O---o-x-o--x-o-x-o-x-o-x-o-o 3

X-o-X-o

-_ -xo -x-o 5

6

Fig. 26. x-z grid of the model canal with variable depth
(k = 92 km, h as given by section n = 17 in the HN
model of the North Sea).

The canal is again 92 km long, and a tidal oscillation with
an amplitude of 100 cm was applied at the right edge. Fig. 26
shows that although the vertical spacing Az was constant, the
depth increments were no longer "quantized," i.e. were no longer
multiples of Az, instead conforming to natural conditions.

The most important results are collected in Figs. 27 and 28
for the steady state. First, Fig. 27 again shows the position
of the water level for various tide phases. Comparing these curves /69
with those for a canal of constant depth (Fig. 20), we find
changes which are smaller than those in Examples 2, 3, and 4.
This indicates that while the present model, as a whole, does
exhibit a more complicated depth fine structure, it differs less
than the other models from the canal with constant depth. Only
the left end of the canal, in which the water is only about
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100-

if 12 11 Punkt

-100

Fig. 27. M2 tide in canal of variable depth.
Water levels at different tide phases (every
eighth of a period).

Key: a. Point

Zomiimdeep, is there again a phase lag in the tides and thus an
intersection point for different water levels (again designated
by a vertical line in the diagram).

Neither does the flow diagram -- given in Fig. 28, again for
two tide phases -- differ very much from that in the canal of
constant depth (Fig. 21). Because the water is shallower at the
entrance, the maximum velocities here and over the entire canal
are greater than in Examplell. From Fig. 28, it can be seen that
there is a tendency for the tidal flow to follow the depth
profile.

3. Wind in Canal of Constant Depth /71

Example 6:

To calculate wind-induced circulation in a canal of constant
depth, the model reproduced in Fig, 19 is again employed, but
with slight modifications. It is assumed that the canal is also
closed on the right; the corresponding fixed boundary corresponds
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a Punkt 2 3 4 5 6 7 8 9 10 11 12 13

0 _-__-- _ -- __.-.__. . -- - -- -- ....

50 m

30

0 -- -----

20

30,

50 m

0 20 40 cm/sec.

Fig. 28. M2 tide in canal of variable depth.
Velocity distribution at two different tidenphases
(t = 0, t = T/2).

Key: a. Pdint

to u-point 13, so that the canal now is 96 km long. A constant
west wind (blowing from left to right) with a velocity of 20 m/sec
is assumed. The other parameters are the same as in Example 1.
The tangential wind-stress coefficient was chosen to be X = 3.210-6,
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Fig. 29 shows the configuration of the water surface and the
velocity distribution along a longitudinal section for the steady
state, which was reached after about 2 days (model time). The
water level has the form of an inclined plane; in the west, it
is below the undisturbed level, and in the east it is raised by
the same amount (to an accuracy of 10-3 cm).
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20 b
Wind t 20 m/Std)
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Fig. 29. Steady wind over closed canal of constant depth.
Top: water level in steady state. Bottom: velocity
distribution in steady state. The broken line shows a
vertical profile.

Key: a. Point
lb, Hour [sic]

c. Scale
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In the lower picture, the(cheight of the basin is again ex-
aggerated by a factor of 800. The water at the surface flows in
the direction of a wind with a relatively high velocity. When "itt,
reaches the right edge, it plunges toward the bottom, resulting
in a broad countercurrent moving toward the left deep in the water.
At the left edge, the water again rises and once again falls
under the direct influence of the wind. The vertical profiles
occurring within this circulation correspond to those in Fig. 38
later on. The only points at which there is an appreciable ver-
tical component to the flow velocity are the ends of the canal
(with maxima at a depth of about 20 m; in the rest of the canal,
w < 10- 3 cm/sec).

As has already been emphasized above, this result for wind-
driven circulation in a canal conforms far better to natural
conditions than the result of ah HN model with vertically inte-
grated equations. The latter model Yields the same water levels,
but also vanishing flow velocities. In the present model, the
kinetibenergy of the wind is converted into the potential energy XY
of the backed-up water and into the kinetic energy of the
circulation.

4. Tide in Basin of Constant Depth /73

Example 7:

The first really three-dimensional studies (i.e. in a region
extended in two horizontal directions and one vertical one) were
conducted in a simple rectangular basin 100 km long, 48 km wide,
and 50 m deep. The grid -- just for the case of a closed basin,
however -- can be seen in Fig. 30; it was based on the canal
model (Fig. 19). The network comprises 72 internal C-points and
six computing planes in the vertical direction. The grid con-
stants are then Ax = Ay.= 8 km and Az = 10 m. According to the
CFL criterion (13), the time step may then be At = 4 min. The
other constants used in the calculation are the vertical exchange
coefficient AV = 103 cm2/sec and the Coriolis parameter /74
f = 12-10- 4 sec- 1 . At the bottom, the flow was assumed to be
zero in accordance with boundary conditions (22.3).

In this three-dimensional HN model, we first studied the
behavior of an M2 co-oscillational tide, generated at the C-points
of the north entrance (n = 1) by prescribing a sinusoidal wave
with a uniform amplitude of 100 cm and a constant phase. The
steady state (defined to be the state in which the water levels
and velocities iato identical times within successive periods)
differ by less than 1 mm and 1 mm/sec respectively) is reached
after no more than four periods.
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w = 48 km, h = 50 m). Top: virtually alternating flows.
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Fig. 31. M2 tide in basin of constant depth. Tidal-flow ellipses
in relation to depth for four selected point. The numbers by
the ellipses give the depth in m. The numbers by the phases lines
in the first [bottom of caption cut off].

In all cases, the monotonic decrease in velocity with depth /76
is very evident; the profiles resemble those found for the canal
(cf. Fig. 37). It can also be seen that the direction of the
tidal-flow ellipses is depth-dependent. The deeper flow figures
are rotated toward the left (in the mathematically positive sense)
relative to the ones near the surface, and this rotation in-
creases with increasing distance from the entrance. Nevertheless,
ellipses associated with points on the same vertical line have
very similar forms.

It should also be pointed out that the sense of the rotation
of the flow figures for one and the same point is the same at
all depths(kdf. the hour figures in the first diagram) and that --
despite the rotation of the axes -- corresponding sections on
ellipses associated with points on the same vertical line are
traversed at roughly the same times. This means that e.g. the
flows of maximum magnitude for a fixed position (n,m) occur at
roughly the same times at all depths. Kagan [25] arrived at a
similar result in calculating tidal-flow ellipses for the Yellow
Sea.

5. Wind in Basin of Constant Depth

Example 8:

The following investigations are based on the basin 96 km
long depicted in Fig. 30. By analogy with Example 6, the wind is
assumed to be a uniform north wind at 20 m/sec, blowing over the
entire basin and constant *n time. The tangential wind-stress
coefficien is X = 3.2-10- and the vertical exchange coefficient
is AV = 10 cm2 /sec. Condition (22.2) is employed as the
boundary condition on the bottom, so that non-zero flow at the
bottom is also permitted.

Fig. 32 shows the global circulation system which has de-
veloped in the steady state after 20 days (model time); the
velocity fields in horizontal planes at six different depths are
depicted.

At the surface, there is a very intensive flow system with
various directions. By and large, the flow is shifted to the /78
right of the wind direction. The absolute magnitudes of the velo-
cities decrease rapidly with increasing depth, and the directions,
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Fig, 32. North wind in basin of constant depth,
Velocity distribution in steady state at various
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particularly in the central portion of the basin, vary widely.
For instance, ji;st 20 m down, there is a broad northward current,
while the surface flow is predominantly toward the south. Never-
theless, the flow arrows along theiwestern and eastern edges,
which always have a sbuthwards component, indicates that trans-
port compensation between the surface current and the deep
current does not in general take place separately at every point
(as in the canal, Example 6), but is supplanted by a three-
dimensional compensation. The flow patterns at every depth can
be transformed onto themselves by (axially symmetric) north/sbuth
and subsequent east/west interchange. The relatively high
velocity can be ascribed to the relatively low energy dissipation,
which is a consequence of the relatively small vertical exchange
coefficient and the minor bottom friction because of condition
(22.2).

Vertical flows were not calculated in this example.

An obvious step is to compare this situation with Ekman's
drift current theory. First, the vector diagrams of the flow
velocities at different depths are drawn in Fig. 33 for three
points. .!Austiall insert show§ the position of the point within
the basin.

In the ideal case, the line connecting the heads of the vec-
tors should yield the well-known Ekman spiral. The curves
calculated for this case differ somewhat from the Ekman pattern,
and the discrepancy obviously decreases as one moves into the
interior of the basin. This situation becomes coemprehensible,
when it is recalled that Ekman started from an ocean which was
unbounded horizontally. The closer one comes to the edge in the
present model, the more seriously this assumption is violated.

In all three cases, there is a deflection toward the right
at the surface; the angles are (from west to east) 200, 990 and
570. While the flow rotates toward the left with increasing depth
at points at the very edge, the flow at points further in toward /80
the center -- in line with Ekman's theory -- rotates further
toward the right, turning back toward the left only inithe
vicinity of the bottom,: this fact is also consistent with Ekman's
theory of elementary flow, obtained under the assumption of finite
water depths. For the purpose of a qualitative comparison, a
curve given by Ekman [28] is drawn next to the right diagram, this
curve having been obtained analytically for a water depth of
h = 1.25 D (D = Ekman's friction depth). The curves resemble
each other quite clhsely.

In the present case, the friction depth is found to be

-2
2AV 2-10/ =/F1 T 2 O4 m = 40.7 m

f 1.2 10
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Fig. 33. North wind in basin of constant depth.
Ekman flow figures (velocity vectors at various
depths) for three selected points. The position of
the point is shown in the sketch to the upper left
of each diagram. The numbers give the depth in
meters. The diagram in the box at the lower right
shows a flow figure given by Ekman.

At this depth, Ekman states that the direction of the flow should
be opposite to that of the surface. The diagram for the point at
the bottom right shows that this is actually the case in the
numerical model at this point.
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Lasty, ,,Fig. 34 permits a comparison with the unsteady Ekman
theory. This diagram depicts the line connecting the velocity
vectors at the surface at the point (6,4) (cf. Fig. 30) in rela-
tion to time (hbdograph). According to Ekman [28], the velocity
vector, in "homing in" on the 450 -direction, travels along the
curve in the form of a Cornu spiral (cf. Fig. 34, right). Aside
from the fact that the theoretical limiting angle of 450 is
exceeded by 120 in the present example, the two hodographs exhibit
remarkable similarity, particularly with regard to the times at
which the specific sections of the curves are traversed.

/81

a

12

Wind

15

0 10 20 cm/sec

Fig. 34. North wind in basin of constant depth. The
position of the tip of the surface vector in relation to
time. for the point (6,4); cf. Fig. 30. The numbers give
the time in hours from the start of the wind. The
diagram in the box at the lower right shows, the corres-
ponding curve as given by Ekman's theory.

Key: a. Direction
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6. Stability of the Explicit Methoda /8 2

Example 9:

In order to test numerically the stability analyses carried
out on the explicit method in Section 11.4.1, a number of HN
models with various constant vertical spacings Az were studied for
the case of a constant wind. As in Example 6, a canal was repre-
sented by six computing planes, the depth of the canal h = 5Az
depending on the choice of Az. Example (A) on p. 39 required a
vertical distance step of

Az > 7.48 m (55)

based on the theory of numerical stability. The calculations were
therefore arranged so that various spacings near this critical
value were employed.

The results of eight representative computations(("for the
values Az = 5, 6, 7, 7.3, 7.5, and 7.45, 7.48, and 10 m) are
collected in Fig. 35. The latter shows (a) the water level at
point 13 of the model in Fig. 19, considered as closed, and (b)
the horizontal velocity at the surface at point 12, both as
functions of time. For reasons of clarity, these diagrams are
subdivided into a long-scale (time itterval 10 hours) figure at
the top and a short-scale (time interval:l0 ;days) figure at the
bottom.

On the whole, the result of the numerical computation il-
lustrated in Fig. 35 agrees very well with the theoretical result.
In particular, unstable behavior was in fact found when the spacing
Az was less than 7.48 m. The "greater" the violation of criterion
(55) the sooner the "overrun" (excessively large positive or nega-
tive numbers) occurred. For instance, the computer broke off
the calculation for Az = 2 Or 5 m after just 1 hour (12 time steps),
but not for 7.5 hours when Az = 7.3 m and not until 1.5 days when
Az = 7.45 m. It is noteworthy that the instability appears much /84
earlier in the velocity than in the water level, so that even
with extreme velocities, the computation continues for quite a
while before the arithmetic check interrupts it. The appearance of
the instability is always preceded by a monotonic drop in the
eastward velocity at point 12, which finally turns around into a
growing westward (= against the wind!) flow.

To this extent, the HN model with Az = 7.48 m also harbors
the danger of instability, although the water level has already
achieved a relatively steady value after 10 days. In point of
fact, the value Az = 7.48 m still violates criterion (55). Un-
fortunately, there is no corresponding comparison calculation with
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P:Eig. 35. Stability of explicit difference method with various
vertical spacings z. Water level and flow velocity at surface
at right side of canal model depicted in Fig. 29 (wind) as func-
tions of time. The two upper diagrams cover a period of 10 hours,
and the lower a 10-day interval. The numbers by the curves give
the vertical spacing in meters.

Az equail to about 7.50 m, covering a period of about 10 days,
which should then show complete stability (with respect to
velocities as well). The corresponding curves for Az = 10 m are
given, and exhibit unambiguously stable behavior.

In summary, this series of numerical tests has demonstrated
the practical effectiveness of the theoretical stability criterion
derived above.

7. Comparison Between Explicit and Implicit Methods

Example 10:

The explicit and implicit HN methods were compared for the
case of wind-induced motion in the closed canal discussed in
Example 6.

Fig. 36 depicts the vertical profile of the horizontal velo4 /85
city for various HN models, as found for the steady state over
the entire canal (cf. Fig. 29). The curve on the right was first
obtained with the aid of the explicit method and a constant
spacing of Az = 10 m. Within the output accuracy of the computer
(10-3 cm or cm/sec for water level and speed respectively), it
coincides with the corresponding result of the implicit method
with the same choice of spacing.

The center curve and the outer curve on the left were obtained
with the aid of the implicit method for the same wind-induced
motion, but with other spacings. The grid was refined near the
bottom in order to get a more detailed picture of the bottom zone,
which is very important dynamically. The intervals ranged from
2.5 m (center curve) to 0.25 m and even 0.01 m (curve on the left)
at the very bottom. As Example 9 indicated, the lower limit of
the refinement would have been about 7.5 m for the explicit
method; the implicit method, on the other hand, even with the
narrow spacing chosen here, provides stable solutions -- consis-
tent with theory.

Fig, 36 shows that the solutions obtained fowtheeidentical
problems with different vertical spacingsaagree quite well with
each other. The further apart the spacing patterns were, the

78



S /86

20

30

40

-8 -6 -4 - 2 4 6 8 10 12 14 6 u[cm/sec]

Fig. 36. Comparison between explicit and implicit dif-
ference methods. Vertical profile of flow velhc4ty in
steady state for wind-induced motion in canal model of
Fig. 29.
Right curve: explicit and implicit method for

Akz = 10 m (k = 1,...,5)
Center curve: implicit method for Akz = 15, 15, 15,

2.5, 2.5 m (k = 1,...,5)
Left curve: implicit method for

Akz = 15, 15, 19.5, 0.25, 0.25 m
(k = 1,...,5)

AkZ = 15, 15, 19.89, 0.10, 0.01 m
(k = 1,...,5).
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greater the differences that resulted. The principal numerical
differences occurred in the approximation of the shear-stress term
at the surface, leading to slightly different surface velocities
and eventually affecting the entire vertical profile.

On the whole, however, the vertical profiles for horizontal
velocity arevvery similar and show that the implicit method can
be employed with consistent success.

8. Vertical Profiles /87

These numerical studies have been based predominantly on
the boundary condition (22.3) -- u = 0 at the bottom. This
zero-flow condition is very common in the literature. Measure-
ments have corroborated it, although current measurements are not
practical right at the bottom, but must be taken a few centi-
meters away.

For comparison, computations have also been performed with
the boundary condition (22.2) -- in general u 9 0 at the bottom.

Example 11:

A direct comparison will now be made between the two boundary
conditions with the aid of a canal model. The vertical profiles
of flow velocity at an interior point during different tide phases
are plotted in Fig. 37 for the case of the M2 tide in a canal of
constant depth (cf. Example 1) with a constant vertical exchange /88
coefficient AV = 103 cm 2/sec. In the upper diagram, boundary
conditions (22.3)wwas employed, and boundary condition (22.2) in
the lower one. Water level vs. time is given (with the same
height scale) in each case -- as the upper boundary of theopirofiles.

It is evident that the second boundary conditio ()lower pic-
ture), which permits non-zero velocities at the bottom, is
hardly suitable for reproducing the observed tidal-flow profiles:
the small amount of bottom friction implies that the horizontal
velocity will decrease only slightly with increasing depth.

The condition u = 0 at the bottom (upper picture), on the
other hand, leads to relatively steep vertical gradients for the
horizontal velocity. The maximum flow velocities at the surface
are now much larger than in the other case. During most of a tide
period, the profiles are characterized by a monotonic decrease in
velocity with depth. Only when the tide is turning are there flow
distributions with maxima below the surface (at 7(h) or even with
a reversal of direction ('at 0,h). It is obvious that the tide
turns first at the bottom.
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Fig. 37. M 2 tide in canal of constant depth for dif-
ferent boundary conditions at the bottom (AV = 103 cm 2 /sec).
Vertical profiles of flow velocity in interior of
model canal depicted in Fig. 19 (point m = 7) for va-
rious tide phases. The numbers by the curves mean
hours (after lunar transit at Greenwich).
Top: boundary condition uB = 0 (cf. (22.3)).
Bottom: boundary condition TB = riuBluB (cf. (22.2)).
The upper boundary of the profile is the associated
water level.

Water level as a function of time is roughly the same in
both cases.

The vertical profiles of tidal flow depicted in the upper
diagram were given in very similar fashion by Sverdrup [181.
Sverdrup based his work on analytical solutions of hydrodynamic
differential equations and likewise used a constant exchange
coefficient AV.

The vertical profiles computed here do agree roughly with
the observed curves, but do not adequately reproduce an essential
property of natural flow profiles, namely the steep gradient
near the bottom (cf. Fig. 39). To this extent, the conjecture
expressed in Section 11.5 -- that assuming a constant exchange /89
coefficient AV would tend to produce linear profiles -- has been
confirmed.
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Example 12:

Fig. 38 shows an analogous depiction of vertical profiles
for a steady west wind of 20 m/sec over a canal of constant depth
(cf. Example 6). AV = const in this case as well. The chrono-
logical evolutibn offthe vertical profile at an interior point
from the onset of the wind until the steady state is reached can
be seen from the diagram. The top curves are for boundary condi-
tion (22.3) and the lower. ones for boundary condition (22.2).

It is evident that the water is carried along by the wind
only in a relatively thin surface layer. Moving down from the
surface, there is an immediate sharp drop in velocity, followed
eventually byaa reversal in the direction of the flow. Depending
on the boundary condition prescribed at the bottom, the maximum
of the deep current is intermediate (upper picture) or righttat
the bottom (lower picture). The shapes of the steady-state
profiles are such that integrating velocity over depth at any
point in the canal yields the value zero, i.e. transport through
any section of the canal vanishes in the steady state.

In the upper diagnam, a comparison is made with an analytic
solution given by Hansen [19] for the case of a steady-state
flow:

u( Z' ~ '2 hz-

AV Zx 2 3

z' is measured positive up from the bottom (z' = h - z). The /91
agreement between the numerical and the analytical values is quite
good throughout. In particular, the statement made by Hansen
that the maximum of the deep current occurs at z' = h/3 and that
the inversion in the direction of the flow occurs at z' = 2h/3
is supported by the numerical results, Only near the surface do
the values differ slightly (cf. column 2 and 3 in Table 2). These
differences can be explained by the relatively coarse grid,
resulting in a correspondingly rough approximation to the slope
of the surface C/8Dx and the shear stress term (17.1). If (17.1)
ig not approximated -- as it was in (22.1) -- by forward differs
ences, but instead by central ones, i.ee.in the form

AV (m,o) - u(,2) U(m) U(m) fUr alle m

the numerical solution agrees better with the analytic ones
(cf. Table 2, column 4).
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Fig. 38. Wind over a canal of constant depth with different
boundary conditions at the bottom. Vertical profiles @f flow
velocity in interior of model canal depicted in Fig. 29. Various
states between onset of wind and steady state. The numbers by
the curves mean minutes after onset of wind.
Top: boundary condition uB = 0 (cf. (22.3)).
Bottom: boundary condition TB = riuBluB (cf. (22.2)).
In the upper diagram, points mark the values derived analytically
by Hansen's method.

Key: a. Steady state

TABLE 2. VERTICAL FLOW PROFILE u(z). COMPARISON.BETWEEN
ANALYTIC SOLUTION AND TWO NUMERIC SOLUTIONS

-Depth z . (1) (2)analyt. numer. numer.

(m) (cm/sec) (cm/sec) (cm/sec)

0 14.3 13.5 14.0

10 4.6 4.0 4.5

20 -1.7 -2.0 -1.7

30 -4.6 -4.7 -4.5

40 -4.0 -4.0 -3.9

Analyses have already been presented in Section 11.5 to show /92
how the vertical profile in Figs. 37 and 38 might be made to
donform better to natural situations. The following examples
deal with a relevant seriesodfnrnumerical tests.

First, Fig. 39 depicts three vertical profiles measured by
different authors, all applying to tidal flows. The profiles on
the left were obtained by Sverdrup [18] on the North Siberian
Shelf, at different hours duringua tidal period. They show that
the maximum velocities in the tidal flow can also occur under the
surface.
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Fig. 39. Measured vertical profiles of tidal-flow velo-
city.
Left: according to Sverdrup [18]. The Roman numerals

mean hours (after lunar transit at Greenwich).
Center: according to Van Veen [17]. The solid curve

reproduces the measurement, and the dotted
line is a profile obeying the power law.

Right: according to Siefert (provided personally). The
curve was measured in the Bay of Germany.

The central curve was obtained by Van Veen [17] in measure-
ments in the Straits of Dover and reflects the average situation
during an interval of several hours in the vicinity of the
greatest flood tide at a point near the French coast (Mi). The /93
broken line drawn in along with it represents the curve

u() h nOb

which provides the best mean analytic approximation to the
measured curve.

Lastly, the curve on the right was measured by Siefert
(Neuwerk Research Group) in the mouth of theElbe'for the flood
tide. It was kindly made available to the author.

A common feature of the different vertical profiles is that
-- starting from the surface -- the velocity is virtually con-
stant over a large distance, and begins to drop rapidly only
in a zone near the bbtt6omn,, In general, the curves can be
approximated quite well by a parabolic profile.
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On the other handl the profiles calculated and presented so
far (cf. Fig. 37) have very slight curvature. In defense, it
must be pointed out that conditions in the ocean are very comp;lex
and thatlpn6files of the form depicted in Fig. 37 have been ob-
served in specific cases. For instance, Van Veen and Siefert
also give some virtually linear profiles, and Curve V of
Sverdrup likewise shows such a tendency. Nevertheless, the curves
given in Fig. 39 can be considered typical, and the numerical
model 'should be designed so that it is capable of reproducing this
vertical behavior of the flow velocity profile.

That it is not enough to employ a vertical exchange term AV
different from those empl6yed in previous tide calculations but
still independent of depth is demonstrated by Fig. 40.

S - -ZO -15 -10 -5 5 10 20 25

3 4 2 6 2 7 8 09
20

50 .

Fig. 40. M2 tide in canal of constant depth for
AV = 102 cm /sec. Vertical profiles of flow velocity
in interior of model canal depicted in Fig. 19 (point
m = 7) for various tide phases. The numbers by the
curves mean hours (after lunar transit at Greenwich).

Example 13:

Here the tidal study of Example 1 is repeated; however, in
place of AV = 103 cm 2 /sec, the vertical exchange coefficient is /94
now taken to be AV = 102 cm2 /sec. As in Fig. 37, the resulting
vertical profiles in Fig. 40 are depicted for pointn7 of the
canal.

It is evident that near the bottom, the profiles have not
changed substantially relative to Fig. 37. However, the previous
almost-linear drop of velocity from the surface downward is no
longer present. The surface velocities are considerably smaller
than in the previous case (Fig. 37);iinegeneral, the velocity
increases with depth, reaches an intermediate maximum, and then
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drops to zero. To this extent, a noteworthy approximation has
been achieved with this HN model to the case observed by Sverdrup
(Fig. 39). Hence, the low internaslniction in the vertical
direction results in more distinctivepr'files; the smoothing
effect brought about by the vertical exchange is naturally less
pronounced well AV is smaller.

Example 14:

Substantial progress toward nature-like vertical profiles
was achieved in a series of numerical tests in which the vertical
exchange coefficient was made a function of depth. We return to /95
the schematic in Fig. 18, in which AV assumed a constant value
AV in a thin boundary layer at the bottom, and took on a likewise
constant value AV > AV over the rest of the depth. By (54), this
approach can be characterized numerically via a suitable choice
of a dimensionless parameter x proportional to the ratio of the
vertical exchange coefficients above and within the boundary layer.
Since relatively little has been revealed about this ratio by
means of measurements, it should be legitimate to vary the
parameter x in a seriesodfacalculations and finally to consider
representative that value which produces the most natural-looking
flow profiles.

Relevant HN sthdies have been conducted for numerous values
of x in the tide model (Example 1) which has already bVen frequent-
ly emplo ed. The results aressummarized in Fig. 41 (AY =
= 103 cm /sdc). Once more, the vertical velocity profile at
point 7 in the canal model is plotted for various exchange-
c oefficient expressions and models (cf. Fig. 37).

In addition to the boundary-layer graphs for x = 210, 1.0,
0.5, and 0.3 (thin solid curves), two other curves were plotted
for purposes of comparison: the proffle computed in previous
models for AV = const (103 cm 2 /sec) (broken curve) and in a pro-
file derivedffrom the power law of Van Veen, which may serve as
a standard of comparison for verisimilitude (thick solid curve).

Just how far away from natural conditions a model with con-
stant vertical exchange coefficient really is can be seen
clearly in the diagram. The curves also show that this dis-
crepancy is immediately reduced by introducing a schematic
boundary layer at the bottom with an exchange coefficient dif-
ferent from the rest of the depth interval. Through this series
of numerical tests, it has been found that the agreement between
the power-law profiles and the HN results is best for x = 0.3.
In fact, Fig. 41 shows that the two curves differ only slightly
in this case.

The numerical simulation of this boundary layer presents no
significant difficultiesoin programming or with respect to the
stability of the method.
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Fig. 41. M2 tide in canal of constant depth. Vertical profiles
of flow velocity in interior of model canal depicted in Fig. 19
(point m = 7) with different expressions for the vertical ex-
change coefficient AV(z). a .A
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[continued on following page]
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Fig. 41 (continued)

AV(z) = A = const

A if O z -h+d
Av(z) if -h+d z'-h

Empirical power law

Key: a. Family parameter
b. Power law

IV. Concluding Remark /97

These investigations have contributed to the three-dimensional
treatment of hydrodynamic problems with the aid of HN methods.
The HN models designed here can be used to derive statements on
the vertical structure of motions as well as to calculate hori-
zontal flows. This offers a chance of attacking physical pro-
cesses in water which depend heavily on the vertical distribution
of flow velocities, such as solid transport, with HN methods.

The examples cited here are restricted to wind-induced and
tide-induced motions in schematic canals and basins, mostly of
constant depth and with a constant vertical exchange coefficient;
to this extent, they have little to do with conditions in natural
seas. On the other hand, numerical questionsaassociated with
the three-dimensional extension of the HN method can be particular-
ly clearly recognized and resolved in thesesi§mple models.

Moreover, two important steps have already been taken with
regard to making the models conform better to natural conditions:
the introduction of arbitrary depth profiles, and the incorpora-
tion of a boundary layer near the bottom.

Of course, many questions are yet to be resolved, and the
models established here must be perfected and extendeddin various
directions. This will be the object of more comprehensive ana-
lyses. One of the main projects will be to develop three-
dimensional HN models for natural marine areas or rivers, in order
to be able to study, for example, tidal processes in the North Sea
or in the tidal estuaries of the Bay of Germany as functions of
both horizontal and vertical distance. The results presented
here for many examples, which usually agree well with available
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information or existing theories, justify the hope that such
studies will be possible in the near future.
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